New Bugs? New Drugs!

CRYSTAL HOWELL, PHARMD, BCPS

UNIVERSITY OF NORTH TEXAS HEALTH SCIENCE CENTER

MEDICAL CITY DALLAS

CRYSTAL.HOWELL@UNTHSC.EDU

A long time ago, in a galaxy far, far away.....

The Microorganisms Strike Back

Urgent threat

- Clostridium difficile
- Carbapenem-resistant Enterobacteriaceae
- Drug-resistant Neisseria gonorrhoeae

Serious threat

- Multi-drug resistant Acinetobacter
- Drug-resistant Campylobacter
- Fluconazole-resistant Candida
- Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs)
- Vancomycin resistant Enterococcus (VRE)
- Multi-drug resistant Pseudomonas aeruginosa
- Drug-resistant non-typhoidal Salmonella
- Drug-resistant Shigella
- Methicillin-resistant Staphylococcus aureus (MRSA)
- Drug-resistant Streptococcus pneumoniae
- Drug-resistant tuberculosis

Learning Objectives

- Review recently FDA approved antimicrobials and antimicrobials in the pipeline
- 2. Discuss appropriate use of new antimicrobial agents and their niche in therapy
- 3. Assess various treatment options for patient cases

A New Hope?

RECENTLY APPROVED

•2015

- Ceftazidime-avibactam
- Isavuconazonium sulfate

•2016

- Obiltoxaximab
- Bezlotoxumab

•2017

- Meropenem/vaborbactam*
- Delafloxacin*
- Ozenoxacin*
- Secnidazole

PHASE 3 CLINICAL TRIALS

- Cadazolid
- Cefiderocol*
- Ervacycline
- Iclaprim*
- Imipenem/cilastatin/relebactam*
- Lefamulin*
- Omadacycline
- Plazomicin
- Zolithromycin
- Fusidic acid
- Zabofloxacin

FDA Approved Antibacterials

Meropenem/vaborbactam (Vabomere™)

- Indication: complicated UTI in adults including pyelonephritis
 - Qualified infectious disease product: cUTI, IAI, HABP, VABP, NF, and CRBSI
- •Mechanism of action:
 - Meropenem binds to PBP to inhibit cell wall synthesis
 - Vaborbactam non-suicidal β-lactamase inhibitor
- •Dose: 4g (2g meropenem and 2g vaborbactam) IV over 3 hrs q8h
 - Renal adjustment required for both meropenem and vaborbactam

Meropenem/vaborbactam

Indicated Bacteria	Possible Bacteria
Enterobacter cloacae species complex	Citrobacter freundii
Escherichia coli	Citrobacter koseri
Klebsiella pneumoniae	Enterobacter aerogenes
	Klebsiella oxytoca
	Morganella morganii
	Proteus mirabilis
	Providencia species
	Pseudomonas aeruginosa
	Serratia marcescens

Ambler Classification

Class	Active Site	Enzyme Type	Example
Α	Serine	PenicillinaseBroad SpectrumExtended-SpectrumCarbapenemase	 TEM1, SHV-1 in <i>E. coli</i> and <i>K. pneumoniae</i> CTX-M in <i>P. aeruginosa</i> KPC-1 in <i>K. pneumoniae</i>
В	Metallo-β- lactamases (Zn ²⁺)	- Carbapenemase	- NDM-1 in Enterobacteriaceae
С	Serine	- Cephalosporinase	- AmpC in Enterobacteriaceae
D	Serine	Broad-SpectrumExtended- SpectrumCarbapenemase	- OXA- family in <i>P</i> . aeruginosa

Amp-C

Primarily chromosomal

- •Common organisms:
 - Morganella morganii
 - Yersinia sp.
 - · Serratia sp.
 - Providencia sp./ Pseudomonas sp./ Proteus sp.
 - Acinetobacter sp./ Aeromonas sp.
 - Citrobacter freundii
 - Enterobacter sp.

Meropenem/vaborbactam

Susceptibility Interpretation for meropenem/vaborbactam

	S	- 1	R
Enterobacteriaceae	≤4/8	8/8	≥16/8

- •β-lactamase activity
 - Effective against KPC, SME, TEM, SHV, CTX-M, CMY, and ACT
 - NOT active against: metallo-β-lactamases or oxacillinases with carbapenemase activity

Meropenem/vaborbactam

•PK/PD:

• PK:

Parameter	Meropenem	Vaborbactam
C _{max} (mg/L)	57.3 (23)	71.3 (28.6)
CL (L/h)	10.5 (6.4)	7.95 (4.3)
AUC _{ss} (mg*h/L)	650 (364)	835 (508)
T _{1/2} (h)	2.3 (2.5)	2.25 (2.1)

• PD parameter:

• Meropenem: time over MIC

Vaborbactam: AUC:MIC

Meropenem and vaborbactam are removed by dialysis

Tango 1 - Methods

•Study Design:

 Phase 3, multicenter, double-blind, double-dummy, randomized comparing meropenem/vaborbactam vs piperacillin/tazobactam in the treatment of cUTI and acute pyelonephritis

•Intervention:

- Meropenem/vaborbactam 4g IV over 3 hrs q8h vs piperacillin/tazobactam
 4.5g IV over 30 min q8h for 10-14 d
- After 5 days allowed to switch to levofloxacin

•Outcomes:

- Primary: m-MITT overall success at end of IV therapy
 - Overall success = clinical cure or improvement and eradication of baseline pathogen to <10⁴
 CFU/mL

Tango 1 - Results

Table 4: Results by Primary Endpoint²

Primary Endpoint	VABOMERE (n=192) n (%)	piperacillin/ tazobactam (n=182) n (%)	Difference (95% CI)
FDA*			
Overall success rate at EOIVT			
m-MITT Population	189/192 (98.4)	171/182 (94.0)	4.5 (0.7, 9.1)
EMA**			
Overall eradication rate at TOC			
m-MITT population	128/192 (66.7)	105/182 (57.7)	9.0 (-0.9, 18.7)
ME population	118/178 (66.3)	102/169 (60.4)	5.9 (-4.2, 16.0)

CI = confidence interval; EOIVT = end of intravenous treatment; m-MITT = Microbiological Modified Intent-to-Treat, ME = microbiological evaluable; TOC = Test of Cure. *Per FDA criteria, a microbiologic outcome of Eradication is defined as the demonstration that the bacterial pathogen(s) found at baseline is reduced to <104 CFU/mL of urine.

Overall success = clinical outcome of cure or improvement and microbiologic outcome of eradication.

^{**}Per EMA Criteria, a microbiologic outcome of Eradication is defined as the demonstration that the bacterial pathogen(s) found at baseline is reduced to <103 CFU/mL of urine.

Tango 1 – Results by pathogen

Table 12: Overall Success Rates by Baseline Pathogen and Beta-lactamase Status at EOIVT and TOC (m-MITT Population)^{2,20}

		Overall Success at EOIVT			Overall Success	at TOC
Pathogen	Beta- lactamase	VAB (N=192)	PIP/TAZO (N=182)		VAB (N=192)	PIP/TAZO (N=182)
	Status	n/N' (%)	n/N' (%)		n/N' (%)	n/N' (%)
Escherichia coli	+	27/27 (100.0)	25/27 (92.6)		19/27 (70.4)	16/27 (59.3)
	-	92/94 (97.9)	82/87 (94.3)		77/94 (81.9)	66/87 (75.9)
Klebsiella	+	20/21 (95.2)	15/15 (100.0)		12/21 (57.1)	6/15 (40.0)
рпеитопіа	-	8/8 (100.0)	10/11 (90.0)		5/8 (62.5)	7/11 (63.6)
Enterobacter	+	7/7 (100.0)	3/3 (100.0)	•	5/7 (71.4)	3/3 (100.0)
cloacae species	-	2/2 (100.0)	1/1 (100.0)		2/2 (100.0)	0/1 (0.0)
complex						
Proteus mirabilis	+	4/4 (100.0)	2/2 (100.0)	•	3/4 (75.0)	2/2 (100.0)
	-	2/2 (100.0)	10/10 (100.0)		0/2 (0.0)	7/10 (70.0)
Pseudomonas	+	2/2 (100.0)	6/8 (75.0)		2/2 (100.0)	3/8 (37.5)
aeruginosa	-	2/2 (100.0)	2/2 (100.0)		2/2 (100.0)	1/2 (50.0)

VAB=VABOMERE; PIP/TAZO=piperacillin/tazobactam

Tango 2

•Study Design:

- Phase 3, multicenter, open-label, randomized trial of adult patients with CRE serious infections and an anticipated 7 days of IV therapy
 - Serious infection: bacteremia, cUTI, AP, HABP, VABP, cIAI

•Intervention:

- Meropenem/vaborbactam 4g IV over 4 hrs q8h vs best available therapy
- Excluded patients with class B metallo-β-lactamases or class D oxacillinases

•Outcomes:

- Proportion of patients with clinical cure at EOT and TOC
- All cause mortality at Day 28

Tango 2 - Results

Table 2. Sensitivity Analysis – Clinical Outcomes by Visit Across All Indications (mCRE-MITT Population)^{1,2}

	Outcomes Across All Indications		Sensitivity Analysis	
	VABOMERE N = 28 n (%)	BAT N = 15 n (%)	VABOMERE N = 19 n (%)	BAT N = 15 n (%)
Clinical Cure at EOT	18 (64.3)	5 (33.3)	16 (84.2)	5 (33.3)
Clinical Cure at TOC	16 (57.1)	4 (26.7)	13 (68.4)	4 (26.7)
Microbiologic Cure* at EOT	18 (64.3)	6 (40.0)	-	-
Microbiologic Cure* at TOC	14 (50.0)	5 (33.3)	-	-
Day-28 Mortality	5 (17.9)	5 (33.3)	1 (5.3)	5 (33.3)

BAT = best available therapy; mCRE-MITT = microbiological carbapenem-resistant Enterobacteriaceae Modified Intent to Treat; EOT = end of therapy; TOC = test of cure

^{*} Microbiologic eradication of baseline pathogen at respective visit or absence of culture result at respective visit

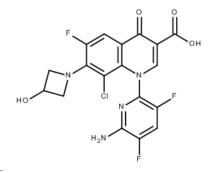
Where does vaborbactam fit in?

	ESBL producer	Amp-C producer	Carbapenamase
Ampicillin-sulbactam	R	R	R
Piperacillin-tazobactam	V	R	R
Ceftazidime-avibactam	S	S	V
Ceftolozane-tazobactam	S	S	V
Aztreonam-avibactam	S	S	V
Meropenem-vaborbactam	V	S	V

R = resistant

S = sensitive

V = variable


Potential Niche?


- Additional trials on clinicaltrials.gov
 - HABP/VABP not yet recruiting
 - Dose finding study for serious bacterial infections in pediatrics recruiting
 - Serious infections due to CRE in adults completed

Clinical thoughts

- Since it doesn't cover metallo- β -lactamases would like susceptibilities prior to use
- For hospitals not doing extended infusions, this drug could be a gateway for other extended infusion β -lactams
- Interesting that the coverage for *Enterobacter* sp was so much lower than piperacillin-tazobactam when β-lactamases were present
- Would reserve this drug for multi-drug resistant gram negative organisms with susceptibilities

Delafloxacin (Baxdela™)

- Indication: acute bacterial skin and skin structure infections (ABSSSI)
- Mechanism of action: inhibits both topoisomerase IV and II
 - Inhibits DNA replication, transcription, repaid, and recombination

•Dose:

- IV: 300mg IV q12h over 60 min x 5-14 d
 - eGFR 15-29: 300mg q14h OR switch to PO after IV dose, not recommended for eGFR < 15
- PO: 450mg PO q12h x 5-14 d
 - No dose adjustment for renal disease, not recommended for eGFR < 15
- Switching: 300mg IV q12h over 60 min then switch to 450mg PO q12h at the discretion of the physician for 5-14d

Warnings

- Tendinitis, tendon rupture, peripheral neuropathy, central nervous system effects, exacerbation of myasthenia gravis, and CDI
- No QTc warning

Delafloxacin

Gram Positive Bacteria	Gram Negative Bacteria
Staphylococcus aureus (including MSSA and MRSA)	Escherichia coli
Staphylococcus haemolyticus	Klebsiella pneumoniae
Staphylococcus lugdunensis	Enterobacter cloacae
Streptococcus pyogenes	Pseudomonas aeruginosa
Streptococcus agalactiae	Enterobacter aerogenes*
Streptococcus anginosus group	Haemophilus parainfluenzae*
Enterococcus faecalis	Klebsiella oxytoca*
Streptococcus dysgalactiae*	Proteus mirabilis*

^{*}Efficacy in treating clinical infections with these organisms is unknown

Delafloxacin

	Minimum Inhibitory		
	Concentrations (mcg/mL)		
Pathogen	S	I	R
Staphylococcus aureus (methicillin- resistant and methicillin-susceptible isolates)	≤ 0.25	0.5	≥ 1
Staphylococcus haemolyticus	≤ 0.25	0.5	≥ 1
Streptococcus pyogenes ^a	≤ 0.06	-	-
Streptococcus agalactiae	≤ 0.06	0.12	≥ 0.25
Streptococcus anginosus Group ^{a, b}	≤ 0.06	-	-
Enterococcus faecalis	≤ 0.12	0.25	≥ 0.5
Enterobacteriaceae ^c	≤ 0.25	0.5	≥ 1
Pseudomonas aeruginosa	≤ 0.5	1	≥2

Delafloxacin

- •PK/PD:
 - PK:

Parameter	Tablet Steady State	IV Steady State
C _{max} (mg/L)	7.45	9.29
CL (L/h)	16.8	13.8
AUC _{ss} (mg*h/L)	30.8	23.4
T _{1/2} (h)	4.2-8.5	

- Distribution: 30-48L (~TBW)
- Metabolism through UGT 1A1, UGT1A3, UGT2B15
- PD parameter: AUC:MIC however the PI also notes that it has a concentration dependent bactericidal activity in vitro

Proceed Study

•Study Design:

 Phase 3, multicenter, stratified, randomized, double-blind trial to evaluate IV delafloxacin vs vancomycin/aztreonam for ABSSSI

•Intervention:

- Delafloxacin 300mg IV or vancomycin 15mg/kg (actual body weight) with aztreonam 2g q12h
 - Aztreonam discontinued if cultures did not have gram negative organisms
- Duration: 5-14 days
- Excluded diabetic foot infections

•Outcomes:

- Primary: 48-72hr (±2) response of ≥ 20% reduction in erythema of lesion without evidence of clinical failure
- Secondary:
 - Investigator assessed success at follow up visit

Proceed - Results

	Delafloxacin	Vancomycin/ Aztreonam	Percentage difference (95% CI)
48-72 hr objective response	78.2%	80.9%	-2.6 (-8.78,3.57)
Cure at follow-up	52%	50.5%	1.5 (-6.11, 9.11)
Success at follow-up	81.6%	83.3%	-1.7 (07.55, 4.13)
Microbiologic response	97.8%	98.4%	Not provided
MRSA Cure at last follow up	83.6%	72.7%	10.9 (-3.71, 25.11)
Cure in obese patients at last follow up	71.7%	57.4%	14.2 (1.34, 26.9)

Proceed – Results Additional Comments

- Baseline demographics similar between the groups
- •Staphylococcus aureus identified in 65.4% and 66.8% of patients with positive cultures in the delafloxacin and vancomycin/aztreonam arms respectively
- •No cases of *Clostridium difficile* occurred, one patient had an incidence of hypoglycemia, two patients had hyperglycemia
- Rate of target attainment with vancomycin was not provided
- •Only 2 patients in the delafloxacin and 5 patients in the vancomycin/aztreonam group had *Pseudomonas aeruginosa*

Potential Niche?

- Additional trials on clinicaltrials.gov
 - Delafloxacin vs. moxifloxacin for CABP recruiting
 - Delafloxacin vs ceftriaxone for uncomplicated Gonorrhea terminated

Clinical thoughts

- Potentially in obese patients where a gram positive organism is identified
- There are rumors that it could be used for polymicrobial infections like diabetic foot ulcers but there is not literature to support it yet
- Concern for resistance development during treatment
- Interesting that it doesn't have an effect on QTc potential treatment opportunities
- Cheaper than vancomycin/aztreonam for patients with beta lactam allergy
- No CDI

Ozenoxacin (Xepi™)

- •Indication: topical treatment of impetigo due to *Staphylococcus aureus* or *Streptococcus pyogenes* in patients > 2 months of age
- Mechanism of action: inhibits topoisomerase II and IV
- Dose:
 - Apply a thin layer to the affected area twice daily for 5 days
 - Each gram contains 10mg of ozenoxacin 1%
- Warnings
 - Bacterial overgrowth
- Negligible to no systemic absorption
- •Antagonistic relationship between ciprofloxacin and ozenoxacin for Staphylococcus aureus

Ozenoxacin Clinical Trial

•Study Design:

 Multicenter, randomized, placebo-controlled, parallel, blinded, superiority phase 3 study to ozenoxacin, retapamulin, and placebo for nonbullous or bullous impetigo

•Intervention:

- Ozenoxacin 1% cream vs placebo cream applied twice daily
- Retapamulin 1% ointment vs placebo applied twice daily
- Duration: 5 days

•Outcomes:

- Primary: clinical response at end of therapy (visit 3, day 6-7)
- Secondary:
 - Clinical response in non-ITT populations
 - Clinical response at day 3-4 (visit 2) and day 10-13 (visit 4)
 - Size of affected area at visits 2,3, and 4
 - Microbiologic response
 - Time to clinical response

Ozenoxacin - Results

Demographics were similar

	Ozenoxacin (n=155)	Placebo (n=156)	P-value	Retapamulin (n=154)	Placebo (n=156)	P-value
Clinical success at visit 3	54 (34.8%)	30 (19.2%)	0.003	58 (37.7%)	30 (19.2%)	0.189
Micro success at visit 3	122 (79.2%)	86 (56.6%)	P < 0.0001	125 (81.7%)	86 (56.6%)	P < 0.001

Phase 3 Pipeline

Iclaprim

- Synthetic diaminopyrimidine
- Mechanism of action: selectively inhibits dihydrofolate reductase (DHFR)
- Spectrum of activity: similar to trimethoprim
 - Gram positive
 - Staphylococcus aureus (MSSA and MRSA)
 - Coagulase negative staphylococci
 - Various streptococcal species
 - Enterococcus
 - Gram negative
 - Neisseria gonorrheae, Haemophilus influenza, Moraxella catarrhalis, Enterobacteriaceae
 - Atypical
 - Chlamydia trachomatis, Chlamydia pneumoniae, Mycoplasma species, Legionella pneumophila

Revive-1

•Study Design:

 Phase 3, multicenter, double-blind, randomized trial comparing iclaprim with vancomycin for ABSSSI due to gram positive organisms

•Intervention:

- Iclaprim 80mg IV (500mL NS) over 120 minutes q12h
- Vancomycin 15mg/kg IV over 120 minutes q12h (trough levels at dose 5)
- Duration: 5-14 days
- Excluded patients with diabetic foot ulcers and uncomplicated SSTI

•Outcomes:

- Primary: compare the early clinical response at 48-72 hrs
- Secondary:
 - Clinical cure rate at test of cure
 - Safety and tolerability

Table 4. Clinical Responses for Primary Endpoint and Secondary Analyses in the Intent-to-Treat Population by Treatment

Clinical Response	Iclaprim (n = 298)	Vancomycin (n = 300)	Treatment Difference (%; 95% Confidence Interval)
Primary endpoint			
ECR at ETP in intent-to-treat	241 (80.9%)	243 (81.0%)	-0.13 (-6.42, 6.17)
Secondary analyses			
ECR at ETP among major cutaneous abscess	35/40 (87.5)	49/55 (89.1)	-1.59 (-14.74, 11.56)
ECR at ETP among cellulitis/erysipelas	54/76 (71.1)	68/87 (78.2)	-7.11 (-20.50, 6.28)
ECR at ETP among wound infections	152/182 (83.5)	126/158 (79.7)	3.77 (-4.50, 12.04)
ECR at ETP among methicillin-resistant <i>Staphylococcus</i> aureus infected	59/73 (80.8%)	50/61 (82.0%)	-1.15 (-17.94, 15.80)
ECR at ETP among methicillin-susceptible <i>S. aureus</i> infected	81/97 (84.4%)	88/104 (85.4%)	-1.06 (-14.94, 12.85)
ECR at ETP among Streptococci pyogenes infected	20/25 (80.0%)	18/25 (72.0%)	8.00 (-32.98, 33.86)
ECR at ETP among diabetics	16/20 (80.0%)	26/35 (74%)	5.71 (-21.94, 32.74)
ECR at ETP among mild renal impairment (CrCl of 60–89 mL/min)	24/30 (80%)	35/44 (80%)	0.45 (-22.43, 23.52)
ECR at ETP among moderate and severe renal impairment (CrCl of <60 mL/min)	5/6 (83%)	9/12 (75%)	8.00 (–46.02, 52.44)
ECR at ETP in per-protocol	228 (84.8%)	232 (86.2%)	-1.49 (-7.44, 4.46)
Clinical cure at TOC	248 (83.2%)	262 (87.3%)	-4.11 (-9.78, 1.56)
Modified clinical cure ^a at TOC	227 (76.2%)	240 (80.0%)	-3.83 (-10.45, 2.80)

Abbreviations: CrCl, creatinine clearance; ECR, early clinical response; ETP, early time point; TOC, test-of-cure.

^a Modified clinical cure defined as a ≥90% reduction in lesion size compared to baseline, no increase in lesion size since ETP, and no requirement for additional antibiotics (except aztreonam or metronidazole) or unplanned significant surgical procedures after ETP.

Iclaprim – Potential niche?

- Other clinical trials on clinicaltrials.gov
 - Iclaprim vs vancomycin for ABSSSI Revive-2: completed
 - Iclaprim vs vancomycin for HAP, VAP, or HCAP: terminated
 - Iclaprim vs linezolid in cSSTI-Assist-1: completed
 - Iclaprim vs linezolid in cSSTI-Assist-2: completed

Thoughts

- No information on vancomycin target attainment
- Why was the pneumonia study was canceled?
- Good option for complicated vancomycin dosing
- Unclear clinical utility other than for MRSA

Lefamulin

- Pleuromutilin
- Mechanism of action: binds to the 23s of the 50s subunit at the peptidyl transferase center inhibiting peptide bond formation and inhibiting protein synthesis
 - https://www.youtube.com/watch?v=gFG8yWYV3ew

Gram Positive	Gram Negative	Atypicals	Anaerobes
Staphylococcal aureus (MSSA, MRSA, VRSA)	Haemophilus sp.	Mycoplasma pneumoniae	Propionibacterium acnes
Coagulase negative Staphylococcus aureus	Moraxella catarrhalis	<i>Chlamydia</i> pneumoniae	Peptocstreptococcus sp
Streptococcus pneumoniae	<i>Neisseria</i> sp.	Legionella pneumophilia	<i>Prevotella</i> sp
Enterococcus faecium (VRE)			Clostridium perfringens

Lefamulin Clinical Trial

•Study design: double-blind, parallel group, multicenter phase 2 study for use of lefamulin in ABSSSI

•Interventions:

- Lefamulin 100mg IV q12h
- Lefamulin 150mg IV q12h
- Vancomycin 1g (adjusted to institution guidelines) IV q12h
- Duration: 5-14 days

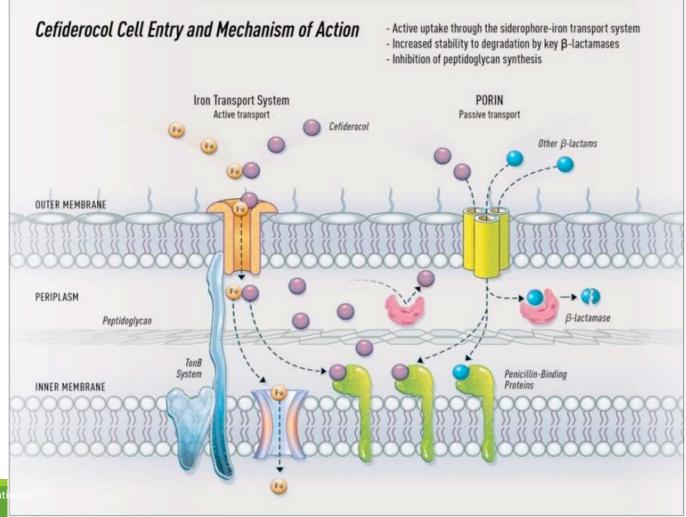
•Outcomes:

- Primary: clinical success at test of cure
- Secondary:
 - Microbiological outcome
 - Safety

Lefamulin

- Baseline characteristics were similar except:
 - Vancomycin group had slightly fewer patients with fever (n=3 vs 5 and 7)
 - Lefamulin 100mg had more patients with a lower extremity infection while vancomycin had more patients with upper extremity infections
 - Lefamulin 150mg had more patients with diabetes mellitus and higher weight

•Micro:


- 151/155 patients had a gram positive infection
 - 90.8% with Staphylococcus aureus with 69.1% being MRSA

	# of Patients	Success	Failure	95% CI
Lefamulin 100mg	60	54 (90)	6 (10)	79.5, 96.2
Lefamulin 150mg	54	48 (88.9)	11.1)	77.4, 95.8
Vancomycin 1g	51	47 (92.2)	4 (7.8)	81.1, 97.8

Potential niche?

- Other trials on clincialtrials.gov
 - Lefamulin vs moxifloxacin for CAP completed
 - Lefamulin vs moxifloxacin w/ or wo/ linezolid for CAP completed
- •Manufacturer website mentions possible use for ABSSSI, STIs, VABP, HABP, OM, and PJI
- •Thoughts:
 - No information on vancomycin target attainment
 - Excited for this new mechanism of action
 - Great drug for CAP given spectrum of activity and high barrier to resistance
 - Could be good for Aspiration pneumonia, STIs, MRSA infections, obesity
 - Does not cover Enterobacteriaceae, *B. fragilis*, or *E. faecalis* so can spare gut flora CDI implications?

Cefiderocol

Cefiderocol

- Spectrum of activity
 - No activity against gram positive organisms
 - Covers gram negative bacteria including CREs and MDR non-fermenters
 - Stable to serine (KPC, OXA, etc.) and metallo β-lactamases (VIM, IMP, NDM, L1, etc.)
 - Potent activity against Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Stentotrophomonas maltophilia
 - MIC testing should be done in iron depleted medium
- Clinical trials on clinicaltrials.gov
 - cUTI vs imipenem/cilastatin completed
 - Severe infection caused by CRE vs best available therapy recruiting
 - Nosocomial pneumonia caused by gram negative pathogens vs meropenem and linezolid - recruiting

Cefiderocol Clinical Trials

•Study Design:

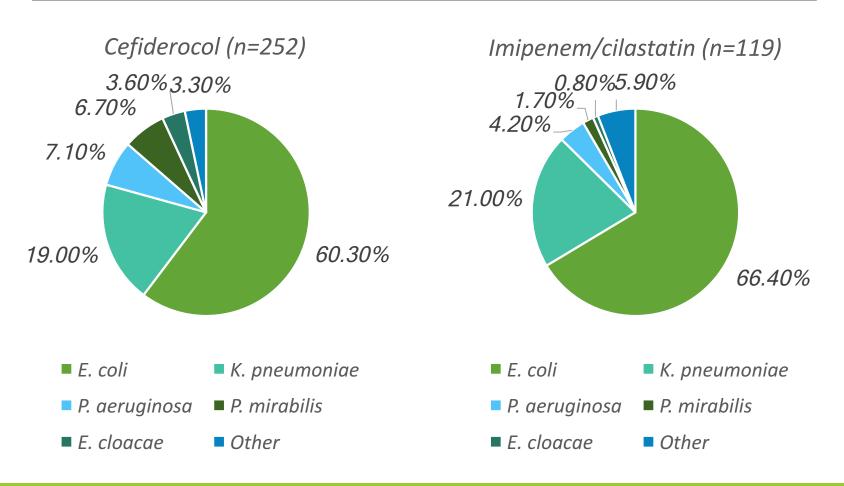
• Phase 3, multicenter, double-blind, randomized, non-inferiority trial to evaluate cefiderocol for treatment of cUTI w/ or w/o pyelonephritis

•Intervention:

- Cefiderocol 2g IV tid
- Imipenem/cilastatin 2g IV tid
- Duration: 7-14 days
- Excluded diabetic foot infections

•Outcomes:

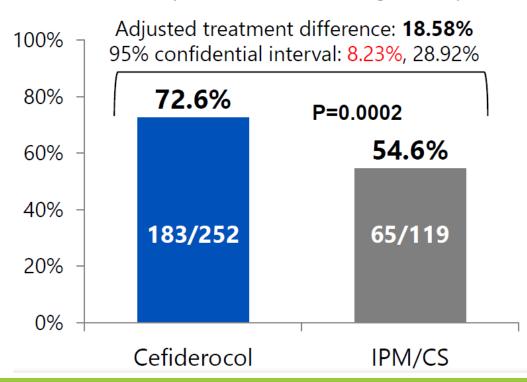
- Primary: composite clinical and microbiological response at TOC in MITT population
- Secondary:
 - Microbiological response at TOC in MITT population


Cefiderocol - Results

- Baseline demographics were similar except
 - The cefiderocol group had a few more cUTI w/ or w/o pyelonephritis (74.2% vs 70.6%)
 - The cefiderocol group hade fewer acute uncomplicated pyelonephritis (25.8% vs 29.8%)
 - The cefiderocol group had a few more patients with a history of neoplasms and chronic pyelonephritis

Adverse effects

- Similar but numerically more for the imipenem/cilastatin arm
- The most common side effects in the cefiderocol arm were
 - Diarrhea (4.3%)
 - Hypertension (4.3%)
 - Constipation (3.3%)
 - Infusion site pain (3%)


Cefiderocol – Micro Results

Cefiderocol – Primary outcome

Primary Endpoint Composite Outcome at TOC

(Clinical Response and Microbiological Response)



Cefiderocol – Potential Niche?

- Novel mechanism of action
- •Strictly gram negative agent with good stability to β-lactamases
 - MDROs
 - Empiric for risk factors for MDROs?
 - Neutropenic fever?
- •Coverage against *S. maltophilia* could be a potential niche
- •I'm curious why they chose imipenem as their comparator
- Concern for impact on patient's iron levels and microbiological testing

Imipenem/cilastatin/relebactam

- •Bicyclic diazabicyclooctane β -lactamase inhibitor against class A and class C β -lactamases
- •Mechanism of action:
 - Imipenem binds to PBP to inhibit cell wall synthesis
 - Cilastatin competitive inhibition of dehydropeptidase of renal tubules to prevent imipenem metabolism
 - Relebactam β- lactamase inhibitor
 - Active against class A and C β- lactamases
 - PK/PD parameter: AUC:MIC
- Qualified Infectious Disease Product for HABP, VABP, cIAI, and cUTI

Imipenem/cilastatin Review

Gram Positive Aerobic Bacteria	Gram Negative Aerobic Bacteria
Enterococcus faecalis	Acinetobacter sp.
Staphylococcus aureus	Citrobacter sp.
Staphylococcus epidermidis	Enterobacter sp.
Streptococcus agalactiae	Escherichia coli
Streptococcus pneumoniae	Gardnerella vaginalis
Streptococcus pyogenes	Haemophilus influenza
	Klebsiella sp.
	Morganella morganii
	Proteus vulgaris
	Providencia rettgeri
	Pseudomonas aeruginosa
	<i>Serratia</i> sp.

Imipenem/cilastatin/relebactam Clinical Trial for cUTI

•Study Design:

 Prospective, randomized, double-blind, multicenter, non-inferiority (with nested superiority), Phase 2b dose-ranging study to evaluate two dose of imipenem/cilastatin/relebactam vs imipenem/cilastatin for cUTI

•Intervention:

- Imipenem/cilastatin 500mg IV + relebactam 250mg IV over 30 min q6h
- Imipenem/cilastatin 500mg IV + relebactam 125mg IV over 30 min q6h
- Imipenem/cilastatin 500mg IV + placebo IV over 30 min q6h
- If adequate response at 96 hrs could switch to oral ciprofloxacin

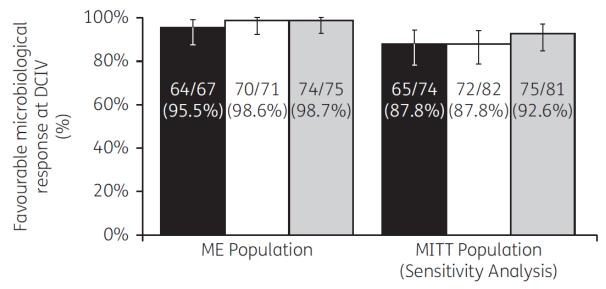
•Outcomes:

- Primary: Microbiological response at discontinuation of IV therapy
- Secondary
 - · Microbiological response at early follow up and late follow up
 - Microbiological response at discontinuation of IV therapy in imipenem-resistant pathogens
 - Clinical response at discontinuation of IV therapy, early follow up, and late follow up

Imipenem/cilastatin/relebactam Results

- Baseline demographics similar except
 - 250mg relebactam group had slightly fewer nephrolithiasis
 - 250mg relebactam group had slightly fewer patients with K. pneumoniae
 - Placebo group had slightly more patients with residual urine
 - Placebo group had fewer imipenem non-susceptible pathogens

Imipenem/cilastatin/relebactam Micro


Table 3. In vitro susceptibility of baseline urine and/or blood pathogens (ME population at DCIV)

		Imipenem+	relebactam			Imipe	enem	
Pathogens	totala	S (%)	I (%)	R (%)	totala	S (%)	I (%)	R (%)
All pathogens	247	93.9	2.0	4.0	248	89.9	3.2	6.9
Acinetobacter baumannii complex	4	0.0	0.0	100.0	4	0.0	0.0	100.0
Citrobacter freundii	3	100.0	0.0	0.0	3	100.0	0.0	0.0
Enterobacter aerogenes	1	100.0	0.0	0.0	1	100.0	0.0	0.0
Enterobacter cloacae	9	100.0	0.0	0.0	9	100.0	0.0	0.0
Escherichia coli	159	100.0	0.0	0.0	159	100.0	0.0	0.0
Klebsiella pneumoniae	34	100.0	0.0	0.0	43	97.1	2.9	0.0
Leclercia adecarboxylata	1	100.0	0.0	0.0	1	100.0	0.0	0.0
Morganella morganii	4	0.0	75.0	25.0	4	0.0	25.0	75.0
Myroides spp.	0	0.0	0.0	0.0	1	100.0	0.0	0.0
Pantoea spp.	1	100.0	0.0	0.0	1	100.0	0.0	0.0
Proteus mirabilis	11	54.5	9.1	36.4	11	45.5	9.1	45.5
Proteus vulgaris	2	100.0	0.0	0.0	2	50.0	50.0	0.0
Providencia rettgeri	2	50.0	50.0	0.0	2	50.0	50.0	0.0
Pseudomonas aeruginosa	16	93.8	0.0	6.3	16	50.0	18.8	31.3

I, intermediate; R, resistant; S, susceptible.

^aTotal number of baseline isolates with susceptibility data available.

Imipenem/cilastatin/relebactam Results

■ IMI+relebactam 250 mg □ IMI+relebactam 125 mg □ IMI+placebo

IMI+relebact	tam 250 mg	IMI+relebactam 125 mg			
vs IMI+	placebo	vs IMI+placebo			
ME population	MITT population	ME population	MITT population		
Difference	Difference	Difference	Difference		
(95% CI):	(95% CI):	(95% CI):	(95% CI):		
-3.1 (-11.2-3.2)	-4.8 (-15.1-4.9)	-0.1 (-6.4-5.9)	-4.8 (-14.7-4.7)		

Imipenem/cilastatin/relebactam Clinical Trials clAl

•Study Design:

 Prospective, randomized, double-blind, multicenter, Phase 2 dose-ranging study to evaluate two dose of imipenem/cilastatin/relebactam vs imipenem/cilastatin for cIAI

•Intervention:

- Imipenem/cilastatin + relebactam 250mg IV over 30 min q6h
- Imipenem/cilastatin + relebactam 125mg IV over 30 min q6h
- Imipenem/cilastatin + placebo IV over 30 min q6h
- Duration 4-14 days

•Outcomes:

Primary: favorable clinical response at discontinuation of IV therapy

Imipenem/cilastatin/relebactam Results

- Baseline demographics were similar except
 - The placebo group had fewer preoperative and more postoperative enrollment times
 - APACHE2 scores were similar with most being ≤ 15
- Most common diagnoses:
 - Complicated appendicitis (52.5%)
 - Complicated cholecystitis (16.5%)
 - Perforated hollow viscus (11.4%)
- •All comparisons of proportion of subjects with favorable clinical response were non-statistically significant

Imipenem/cilastatin/relebactam Micro

TABLE 6 Proportion of subjects in the ME population with favorable clinical response at DCIV by baseline pathogen^a

	Result for treatment group						REL vs placebo comparison, % difference (95% CI) ^b		
	250 mg REL + IMI (n = 81)		125 mg REL + IMI (n = 86)		Placebo + IMI $(n = 83)$				
Pathogen	n/m	%	n/m	%	n/m	%	250 mg REL + IMI	125 mg REL + IMI	
Gram-positive aerobic cocci	32/32	100	32/33	97.0	33/34	97.1	2.9 (-8.1 to 15.1)	-0.1 (-12.9 to 12.4)	
Enterococcus faecalis	7/7	100	5/5	100	5/5	100	0.0 (-37.4 to 45.6)	0.0 (-46.1 to 46.1)	
Streptococcus anginosus	5/5	100	6/6	100	7/7	100	0.0 (-45.6 to 37.4)	0.0 (-41.0 to 37.3)	
Streptococcus constellatus	2/2	100	5/6	83.3	6/6	100	0.0	-16.7 (-57.9 to 28.5)	
Gram-negative aerobic bacilli	73/75	97.3	73/73	100	68/72	94.4	2.9 (-4.4 to 11.2)	5.6 (0.4 to 13.5)	
Enterobacter cloacae	7/7	100	4/4	100	4/4	100	0.0 (-37.6 to 51.4)	0.0 (-52.3 to 52.3)	
Escherichia coli	53/55	96.4	56/56	100	47/51	92.2	4.2 (-5.7 to 15.4)	7.8 (1.1 to 18.6)	
Klebsiella pneumoniae	10/10	100	12/12	100	10/12	83.3	16.7 (-14.4 to 45.5)	16.7 (-10.6 to 45.4)	
Proteus mirabilis	8/8	100	4/4	100	6/6	100	0.0 (-34.1 to 40.8)	0.0 (-51.6 to 41.6)	
Pseudomonas aeruginosa	11/11	100	13/13	100	10/12	83.3	16.7 (-12.4 to 45.5)	16.7 (-9.0 to 45.4)	
Gram-negative anaerobic bacilli	22/24	91.7	30/30	100	26/27	96.3	-4.6 (-23.0 to 11.4)	3.7 (-8.1 to 18.5)	
Bacteroides fragilis	11/11	100	8/8	100	12/12	100	0.0 (-26.7 to 25.1)	0.0 (-33.6 to 25.2)	
Bacteroides thetaiotaomicron	6/6	100	6/6	100	6/7	85.7	14.3 (-29.9 to 52.8)	14.3 (-29.9 to 52.8)	

[&]quot;The most common pathogens (those with at least 15 unique baseline isolates) are shown. CI, confidence interval; IMI, imipenem-cilastatin; n/m, number of subjects with pathogen and favorable clinical response/number of subjects with pathogen and clinical response assessment. Subjects with an indeterminate or missing response are excluded from the analysis.

^b The 95% confidence intervals are based on the unconditional asymptotic Miettinen and Nurminen method without stratification.

Potential niche?

Trials on clinicaltrials.gov:

- Imipenem/cilastatin/relebactam in Japanese patients with cIAI or cUTI recruiting
- Imipenem/cilastatin/relebactam vs colistimethate + imipenem/cilastatin for imipenem resistant bacteria – completed
- PK in pediatric study recruiting
- Imipenem/cilastatin/relebactam vs piperacillin/tazobactam for bacterial pneumonia – recruiting

•Thoughts:

- Last line therapy mostly for MDR Pseudomonas aeruginosa with susceptibility results
- Still worried about side effects of imipenem
- Likely dose will be imipenem/cilastatin 500mg + relebactam 250mg IV q6h

Where does relebactam fit in?

	ESBL producer	Amp-C producer	Carbapenamase
Ampicillin-sulbactam	R	R	R
Piperacillin-tazobactam	V	R	R
Ceftazidime-avibactam	S	S	V
Ceftolozane-tazobactam	S	S	V
Aztreonam-avibactam	S	S	V
Meropenem-vaborbactam	V	S	V
Imipenem/cilastatin-relebactam	V	S	V

R = resistant

S = sensitive

V = variable

Questions?

New Bugs? New Drugs!

CRYSTAL HOWELL, PHARMD, BCPS

UNIVERSITY OF NORTH TEXAS HEALTH SCIENCE CENTER

MEDICAL CITY DALLAS

CRYSTAL.HOWELL@UNTHSC.EDU